مقاله مجموعه‌های مرکزی و شعاع‌ها در گراف‌های مقسوم علیه صفر از حلقه‌های جابجائی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله مجموعه‌های مرکزی و شعاع‌ها در گراف‌های مقسوم علیه صفر از حلقه‌های جابجائی در word دارای 31 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله مجموعه‌های مرکزی و شعاع‌ها در گراف‌های مقسوم علیه صفر از حلقه‌های جابجائی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله مجموعه‌های مرکزی و شعاع‌ها در گراف‌های مقسوم علیه صفر از حلقه‌های جابجائی در word

1-مقدمه
2-پیش نیازها
فصل دوم
12-شعاع
22-مرکز
32 – میانه
42 مجموعه های غالب و کار بردهای دیگر (Domainting sets)
منابع

بخشی از منابع و مراجع پروژه مقاله مجموعه‌های مرکزی و شعاع‌ها در گراف‌های مقسوم علیه صفر از حلقه‌های جابجائی در word

. 1- Anderson , D. D , Nasser , M . (1993) . Becks Gloring of a commitativering J
Algebra 159:500-
2-Anderson , n , D , f
living stone , p . s . (1999) . the zero – dirisor graph of a commiutative ring .j . algebra 217: 434-
3- anderson , d.f., frazier .a ., laure , a., living ston , p.s. (2001).the zero divizor grap[h of a commiutative ring lecture notes in pure and appl . math 202 new york : marsel dekker , pp . 61-
4- beck , I . ( 1988) . coloring of commutative rings .j algebra 115: 208 –
5- berg , c . ( 1976) . graphs and hyperg raphs . new york ; american el sevier publishing co inc
6- cannon , g, a , neue burg , k ,m red mond , s.p .(2005) .zero – devisor graphs of nearrings and semi groups . nearings and near fields doredrecht : springer , pp . 189-
7- de meyer , f schneider , k . ( 2002 ) . automorphims and zero divisor graphs of commutative ring . internal . j . commutative ring 1(3) : 93 –
8- de meyer , f ,mekenize , t schneider ,k . (2002) . the zero – devisor graph of a commutative semi group . semigroup forum 65(2): 206-
9- kaplan sky , I . (1974) . commutative rings . washington . nj ploy gonal publishing house
10- redmond , s. p . (2002) –the zero – devisor graph of a non communtative ring . inter nat . j . commitative ring 1(4) :203-
11- redmond , s, p . (2003) . : an ideal – based zero devisor graph of a commutative ring . comm . algebra 31(9) : 4425 –4443
12-redmond , s, p (2004) . structure in the zero – devisor graph of a non commutative ring . houston j . math . 30(2) : 345-
13- smith , no . (2002) planav zero –devisor graph . internat .j . commutative ring 2(4) : 177-
14- vizing , v , g , (1967) . the number of edges in a graph of a given radius . soriet math . dokl . 8.535-
15- west , d b . (2001) . introduction to graph theory . znded . upper saddle river , nj : prentice hall

 خلاصه‌ی مطالب

          برآن شدم تا با تلاش مستمر مطالبی را از نظر گرامیتان بگذرانم که بدیع باشد و قابل ارائه، امیدوارم رضایت خاطر شما خوانندگان گرامی را جلب نمایم. دراین‌جا خلاصه‌ای از مطالبی که مطالعه خواهید کرد آورده شده است

          دریک حلقه‌ی جابجایی و یکدار R، گراف مقسوم علیه صفر ، گرافی است که رأس های آن مقسوم علیه های صفر غیرصفر R می باشند که درآن دو رأس مجزای xو y مجاورند هرگاه xy=0. این مقاله اثباتی براین مطلب است که اگر R نوتری باشد آن گاه شعاع ،0،1 و یا 2 می باشد و نشان داده می‌شود که وقتی R آرتینی می‌باشد اجتماع مرکز با مجموعه {0} اجتماعی از ایده آل های پوچ ساز است. زمانی که مرکز گراف مشخص شده باشد می توان قطر  را تعیین کرد و نشان داده می‌شود که اگر R حلقه‌ی متناهی باشد آن گاه میانه زیر مجموعه ای از مرکز آن است. زمانی که R آرتینی باشد با به کاربردن عناصری از مرکز  می‌توان یک مجموعه‌ی غالب از  ساخت و نشان داده می شود که برای حلقه‌ی متناهی ، که F میدان متناهی است، عدد غالب  مساوی با تعداد ایده آل های ماکسیمال مجزای R است. و هم‌چنین نتایج دیگری روی ساختارهای  بیان می‌شود

1-مقدمه

          حلقه‌ی جابجایی و یکدار R داده شده است. گراف مقسوم علیه صفر، ، گرافی است که رأس های آن مقسوم علیه های صفر غیرصفر حلقه R می باشند، بین دو رأس مجزای x  و y یال وجود دارد اگر وفقط اگر xy=0 باشد. گراف مقسوم علیه صفر حلقه‌ی R با  نشان داده می شود. این تعریف از  ابتدا توسط livings Ston (1999) و Anderson بیان شد که تعداد زیادی از ویژگی های اساسی  مورد بررسی قرار گرفت. تعریف اصلی توسط Beck (1988) و Nasser (1993) و Anderson بیان شد که همه‌ی عناصر حلقه به عنوان رأس های گراف انتخاب می شدند

          و Anderson et al.(2001) , De meyer and Schnieider (2002), Smit (2002) مقاله‌های دیگری درارتباط با گراف مقسوم علیه صفر از حلقه های جابجایی ارائه دادند. این ساختار های گرافیکی به شکل موضوع های جبری دیگر توسط Cannon et al.(2005) and DeMeyer et al.(2002), Redmond (2002)2003,2004) تعمیم داده شده است، که در ادامه به آن می پردازیم

درطول این پژوهش برآنیم که نتایجی را روی حلقه های یکدار و جابجایی متناهی بیابیم. این نتایج برای عمومی ترین موارد ممکن بیان می شود. هدف ارائه دادن همه‌ی نظریه های کاربردی از مرکزیت گراف و تحقیق درمورد مفاهیم تقریباً محض از گراف های مقسوم علیه صفر می باشد. ابتدا نشان داده می شود که شعاع های گراف مقسوم علیه صفر یک حلقه نوتری و جابجایی و یکدار 0، 1، 2 می‌باشد. این قضیه دربخش های بعدی برای تعریف خصوصیات سه مجموعه مرکزی (مرکز، میانه و مجموعه های غالب با اندازه‌ی می نیمال) درگراف های مقسوم علیه صفر از حلقه‌های جابجایی و یکدار به کاربرده می شود. و نیز ارتباط بین این مجموعه ها مورد بررسی قرار می گیرد. به عنوان پیامدی از این نتایج، ویژگی های دیگری از  را بیان می کنیم که از جمله‌ی آن ها قطر و کران ها روی تعداد یال های گراف می‌باشد

2-پیش نیازها

          بالطبع لازمه‌ی پردازش به مبحث مجموعه های مرکزی و شعاع ها در گراف های مقسوم علیه صفر حلقه های جابجایی واقف بودن به تعاریفی است که آن را باید پیش نیاز نامید

تعریف 121 پوچ ساز (annihilator) x مجموعه‌ی عناصر  می باشد به طوری که xy=0 به عبارت دیگر

تعریف 221عنصر ناصفر x درحلقه‌ی R را یک مقسوم علیه صفر (zero dirisor)  گوییم هرگاه عنصر ناصفری از R مانند موجود باشد به طوری که xy=

مجموعه‌ی مقسوم علیه های صفر حلقه‌ی R را با Z(R) نشان می دهیم که به صورت زیر می‌باشد

تعریف 321عنصر  راعنصر پوچ توان R (nillpotent) می نامیم هرگاه  موجود باشد به طوری که xn=

تذکر: بدیهی است که هر عنصر پوچ توان یک مقسوم علیه صفر حلقه می‌باشد

تعریف 421 پوچ رادیکال (nillradical) حلقه‌ی R ایده آلی شامل همه‌ی عناصر پوچ توان حلقه R می باشد که به صورت nill (R) نمایش داده می شود

تعریف 521اشتراک همه‌ی ایده آل های ماکسیمال حلقه‌ی R را رادیکال جیکوبسن R (Jacobson) می نامیم و با J(R) نمایش می دهیم

تعریف 621 حلقه‌ی R راتحویل یافته یا تقلیل یافته  (reduced) می نامیم هرگاه عنصر پوچ توان غیرصفر نداشته باشد

اکنون مروری داریم بر بعضی از تعریفات و نمادهای نظریه گراف

برای دریافت پروژه اینجا کلیک کنید

مقاله سیستم اعداد مانده‌ای (باقیمانده) در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله سیستم اعداد مانده‌ای (باقیمانده) در word دارای 28 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله سیستم اعداد مانده‌ای (باقیمانده) در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله سیستم اعداد مانده‌ای (باقیمانده) در word

1-1) مقدمه
2-1) عملیات ریاضی
1-2-1) معکوس ضرب
3-1) سیستم اعدادمبنای در هم وابسطه
4-1) تبدیل اعداد به سیستم اعداد مانده‌ای و برعکس
1-4-1-) تبدیل اعداد از سیستم باینری به سیستم مانده‌ای
5-1) انتخاب پیمانه

سیستم اعداد مانده‌ای (باقیمانده)

سیستم اعداد مانده‌ای یک سیستم اعداد صحیح است، که مهمترین ویژگی‌اش بطور ذاتی انتقال رقم نقلی مجازی در جمع و ضرب و تفریق‌هاست، همچنین نتجه جمع و تفریق و ضرب اعداد ما در مرحله اول بدون در نظر گرفتن طول اعداد مشخص می‌شود، متأسفانه در سیستم اعداد مانده‌ای عملیات ریاضی دیگری مانند تقسیم و مقایسه و شناسایی علامت خیلی پیچیده و کند هستند از مشکلات دیگر سیستم اعداد مانده‌ای این است که چون با سیستم اعداد صحیح کار می‌کند در نتیجه نمایش اعداد اعشاری در سیستم اعداد مانده‌ای خیلی ناجور است با توجه به خواص سیستم اعداد مانده‌ای نتیجه می‌گیریم که در اهداف عمومی کامپیوترها (ماشین حساب‌ها) به صورت کاملاً جدی نمی‌تواند مطرح بشود. بهرحال ، برای بعضی از کاربرها که اهداف خاصی دارند مثل بسیاری از انواع فیلترهای دیجیتال، تعداد جمع و ضرب‌هایی که اساساً بزرگتر تعداد و درخواست بزرگی دامنه و شناسایی سرریز، تقسیم و شبیه این‌ها، سیستم اعداد باقیمانده خیلی جذاب و جالب می‌تواند باشد

1-1) مقدمه

سیستم اعدادمانده‌ای اساساً بوسیله یک مبنای چندتائی (N – تائی) و نه یک مبنای واحد مثل  از اعداد صحیح مشخص می‌شود. هر کدام از ها باقیمانده پس از تقسیم یک عدد بر آن‌ها است.عدد صیح X در سیستم اعداد مانده‌ای بوسیله یک N -تائی مثل  نمایش داده می‌شود که هر  یک عدد غیرمنفی صحیح است که در رابطه زیر صادق است

X

جدول 1-1 نمایش اعداد در سیستم اعداد مانده‌ای به پیمانه‌

 بزرگترین عدد صحیحی است بطوریکه  معروف است به باقیمانده X به پیمانه Mi ، و در روش نوشتن اعداد  هر دو و با یک مفهوم استفاده می‌شوند

مثال 1-1 سیستم اعدادمانده‌ای 2- باقیمانده‌ای با پیمانه‌های  را ملاحظه کنید در این سیستم نمایش عدد صحیح x=5 به صورت  نمایش داده می‌شود که  و  از رابطه‌های زیر بدست می‌آیند

بنابراین در این سیستم اعداد مانده‌ای با پیمانه‌های  و  عدد صحیح 5 به صورت (2,1) نشان داده می‌شود

عدد X لزوماً نباید یک عدد صحیح مثبت باشد بلکه  می‌تواند عدد صیح منفی هم باشد برای مثال اگر X=-2 باشد آنگاه

نکته‌ای که در اینجا وجود دارد این است که  ها مثبت تعریف می شوند

بنابراین عدد صیح -2 در سیستم اعداد مانده‌ای با پیمانه‌های  و  بصورت  نمایش داده می‌شود

جدول 1-1 اعداد صحیح در محدوده [-4,8] را در سیستم اعداد مانده‌ای به پیمانه  نمایش داده است

همانطور که از جدول 1-1 مشخص است نمایش مانده‌ای یک عدد صحیح منحصر بفرد است در حالی که بر عکس این مطلب درست نیست و نمایش صحیح دو یا چند عددمانده‌ای ممکن است

برای دریافت پروژه اینجا کلیک کنید

مقاله ریاضیات گسسته در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله ریاضیات گسسته در word دارای 31 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله ریاضیات گسسته در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله ریاضیات گسسته در word

–    مقدمه      
–    جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان      
–    محتوای کلی ریاضیات گسسته  
–    تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال   
–    مرور تاریخی مباحث مهم ریاضیات گسسته       
–     مفهوم جایگشت  
–    اولین فن حدس زدن      
–    دیریکله       
–    تاریخچه اصل شمول و عدم شمول  
–    نظریه گراف 
–    مسئله پل کونیگسبرگ 
–    طریقه نمایش گراف 
–    گراف هامیلتونی
–    رابطه های بازگشتی و مبادلات تفاضلی 
–    نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی  
–    منابع 

بخشی از منابع و مراجع پروژه مقاله ریاضیات گسسته در word

1- اصول فراگیری و آموزش ریاضیات دبیرستانی و پیش دانشگاهی،  تالیف دکتر محمد جهانشاهی

 2- ریاضیات گسسته و ترکیباتی، تالیف رالف گریمالدی ، ترجمه علی عمیدی

 3- ریا ضیات گسسته ومقدماتی، تالیف بالا کریشنان ، ترجمه دکتر بیژن شمس و دکتر محمدعلی رضوانی

مقدمه:

تاریخچه ریاضیات گسسته

پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است

معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود

ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند

جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی

در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ; می باشیم

 همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد

مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین

در مجله بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است

» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«

محتوای کلی ریاضیات گسسته

محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه  وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست

به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست

منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته

 

تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)

 

برای دریافت پروژه اینجا کلیک کنید

مقاله شبکه ها و تطابق در گراف در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله شبکه ها و تطابق در گراف در word دارای 48 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله شبکه ها و تطابق در گراف در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله شبکه ها و تطابق در گراف در word

شبکه ها    
1-1شارش ها    
1-2برش ها    
1-3 قضیه شارش ماکزیمم – برش مینیمم    
روش نشانگذاری    
1-4 قضیه های منجر    
تطابق ها    
2-1 تطابق ها    
2-2 تطابق و پوشش ها در گراف های دو بخشی    
3-3 تطابق کامل    
2-4 مساله تخصیص شغل    
منابع    

بخشی از منابع و مراجع پروژه مقاله شبکه ها و تطابق در گراف در word

1)    ریاضیات گسسته و ترکیباتی ، مؤلف: رالف پ. گریمالدی

ترجمه: دکتر محمد علی رضوانی و دکتر بیژن شمس

انتشارات فاطمی

2)    درآمدی بر نظریه گراف، مؤلف: ربین ج. ویلسون

ترجمه: دکتر جعفر بی آزار

انتشارات دانشگاه گیلان

3)    نظریه گراف و کاربردهای آن، مؤلفین: جی.ای.باندی و یو.اس.ار.مورتی

ترجمه : حمید ضرابی زاده

موسسه فرهنگی هنری دیباگران تهران

 شبکه ها

1-1شارش ها

شبکه های حمل و نقل، واسطه‌هایی برای فرستادن کالاها از مراکز تولید به فروشگاهها هستند. این شبکه ها را می‌توان به صورت یک گراف جهت دار با یک سری ساختارهای اضافی درنظر گرفت و آن ها را به صورت کارآیی مورد تحلیل و بررسی قرار داد. این گونه گراف های جهت دار، نظریه ای را به وجود آورده اند که موضوع مورد بحث ما در این فصل می باشد. این نظریه ابعاد وسیعی از کاربردها را دربرمی‌گیرد

تعریف 1-1 فرض کنیم N=(V,E) یک گراف سودار همبند بیطوقه باشد. N را یک شبکه یا یک شبکه حمل و نقل می‌نامند هرگاه شرایط زیر برقرار باشند

(الف) رأس یکتایی مانند  وجود دارد به طوری که ، یعنی درجه ورودی a، برابر 0 است. این رأس a را مبدأ یا منبع می‌نامند

(ب) رأس یکتایی مانند  به نام مقصد یا چاهک، وجود دارد به طوری که od(z)، یعنی درجه خروجی z، برابر با 0 است

(پ) گراف N وزندار است و از این رو، تابعی از E در N، یعنی مجموعه اعداد صحیح نامنفی، وجود دارد که به هر کمان  یک ظرفیت، که با  نشان داده می‌شود، نسبت می‌دهد

برای نشان دادن یک شبکه، ابتدا گراف جهت زمینه آن (D) را رسم کرده و سپس ظرفیت هر کمان را به عنوان برچسب آن کمان قرار می‌دهیم

مثال 1-1 گراف شکل 1-1 یک شبکه حمل و نقل است. در این جا رأس a مبدأ و راس z مقصد است و ظرفیتها، کنار هر کمان نشان داده شده‌اند. چون ، مقدار کالای حمل شده از a به z نمی‌تواند از 12 بیشتر شود. با توجه به  بازهم این مقدار محدودتر می‌شود و نمی‌تواند از 11 تجاوز کند. برای تعیین مقدار ماکسیممی که می‌توان از a به z حمل کرد  باید ظرفیتهای همه کمانهای بشکه را درنظر بگیریم

تعریف 1-2 فرض کنیم  یک شبکه حمل و نقل باشد تابع f از E در N، یعنی مجموعه اعداد صحیح نامنفی، را یک شارش برای N می نامند هرگاه

الف) به ازای هر کمان  و

ب) به ازای هر ، غیر از مبدأ a یا مقصد  z ،  (اگر کمانی مانند (v,w) وجود نداشته باشد، قرار می دهیم

مقدار تابع f برای کمان e، f(e) را می توان به نرخ انتقال داده در طول e، تحت شارش f تشبیه کرد. شرط اول این تعریف مشخص می‌کند که مقدار کالای حمل شده در طول هر کمان نمی تواند از ظرفیت آن کمان تجاوز کند، کران بالایی شرط الف را قید ظرفیت می‌نامند

شرط دوم، شرط بقا نامیده می شود و ایجاب می کند که، مقدار کالایی که وارد رأس مانند v می شود با مقدار کالایی که از این رأس خارج می شود برابر باشد. این امر در مورد همه رأسها به استثنای مبدأ و مقصد بر قرار  است

مثال 1-2 در شبکه های شکل 1-2، نشان x,y روی کمانی مانند e به این ترتیب تعیین شده است که y , x=c(e) مقداری است که شارشی مانند f به این کمان نسبت داده است. نشان هر کمان مانند e در  صدق می کند. در شکل 1-2 (الف)، شارش، وارد رأس  می شود،5 است، ولی شارشی که از آن رأس خارج می شود 4=2+2 است. بنابراین، در این حالت تابع f نمی تواند یک شارش باشد. تابع f برای شکل 1-2 (ب) در هر دو شرط صدق می کند و بنابراین، شارشی برای شبکهء مفروض است

توجه داشته باشید که هر شبکه، حداقل دارای یک شارش است، زیرا تابع fای که در آن به ازای هر  داشته باشیم:  در هر دو شرط تعریف
1-2 صدق می کند. این تابع، شارش صفر نامیده می شود

تعریف 1-3 فرض کنیم f شارشی برای شبکه حمل و نقل N=(V,E) باشد

الف) کمانی مانند e متعلق به این شبکه را اشباع شده می نامند هر گروه f(e)=c(e) اگر f(e)<c(e) این کمان را اشباع نشده می نامند

ب) اگر a مبدأ N باشد،  را مقدار شارش می نامند

مثال 1-3 در شبکه شکل 1-2 (ب) فقط کمان  اشباع شده است. هر یک از کمان‌های دیگر اشباع نشده است. مقدار شارش این شبکه

است. ولی آیا شارش دیگری مانند  وجود دارد که به ؟

می‌گوئیم شارش fدر N، یک شارش ماکزیمم  است، هر گاه هیچ شارش دیگری مانند  در N با شرط  وجود نداشته باشد

هدف ما در ادامه، تعیین یک شارش ماکزیمم است. برای انجام این کار، ملاحظه می‌کنیم که در شکل 1-2 (ب) داریم

درنتیجه، شارش کل خارج شده از مبدأ a شارش کل وارد شده به مقصد z برابر  است

برای دریافت پروژه اینجا کلیک کنید

مقاله کاربردهای عملی تحقیق در عملیات در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله کاربردهای عملی تحقیق در عملیات در word دارای 42 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله کاربردهای عملی تحقیق در عملیات در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله کاربردهای عملی تحقیق در عملیات در word

چکیده    
1- مقدمه    
2- کدام عبارت    
3- پژوهش در عملیات چیست؟    
4- تحلیل تعاریف    
5- تاریخ پژوهش در عملیات    
6- پژوهش در عملیات و حوزه های مرتبط    

چکیده

این مقاله به تشریح مفاهیم و اصول پژوهش در عملیات می‌پردازد. تعاریف مختلفی از پژوهش در عملیات مطرح می‌شود و موضوع از جنبه علم بودن، هدف، ابزار، فنون، روش علمی، فعالیت‌ها و سایر ویژگی‌ها مورد بررسی قرار می‌گیرد. سپس پیدایش، تحول و توسعه پژوهش در عملیات در سه دوره زمانی قبل از جنگ جهانی دوم، جنگ جهانی دوم، و پس از جنگ جهانی دوم شرح داده می‌شود. در پایان به حوزه‌های مرتبط با پژوهش در عملیات اشاره می‌شود

کلیدواژه : تعریف؛ تاریخچه؛ ابزار؛ فنون؛ پژوهش در عملیات؛ تحقیق در عملیات؛ پژوهش عملیاتی؛ مفاهیم؛ اصول


1- مقدمه

با وجود منابع علمی بیشمار در زمینه پژوهش در عملیات درصد ناچیزی از آ‌‌‌نان به مفاهیم، اصول و روش پژوهش این حوزه پرداخته‌‌‌اند. برخی از دلایل این نارسایی را باید در میان دلایل توسعه نیافتن روش پژوهش در علوم پایه و فنی و مهندسی جست. در این حال و از اوایل دهه 70 به این طرف، هدف دوره‌های آموزشی پژوهش در عملیات که در قالب رشته‌های فنی و مهندسی مانند مهندسی صنایع، رشته‌های ریاضی کاربردی و بعضی از گرایشهای مدیریت تدوین شدند، خواسته یا نا‌خواسته تربیت متخصصینی بوده‌است که به توسعه روشها و مفاهیم ریاضی این حوزه بپردازند

   این شرایط باعث مهجور ماندن جنبه کاربردی پژوهش در عملیات (که به خاطر آن توسعه یافته بود) شده‌ است. در ایران نیز که تقریباً هر رشته و حوزه علمی همین شرایط را داراست، وضعیت اشاره شده برای پژوهش در عملیات را بیش از سایر جاها تشدید نموده‌ است

   علاوه بر این و با وجود کلاسهای متعدد پژوهش در عملیات در دانشگاههای ایران، دانشجویان کمتر با مفاهیم و مبانی آن آشنا شده و بدون هیچ هدف‌گذاری و برنامه‌‌ریزی برای تدوین دوره‌های آموزشی از سوی وزارت علوم، تحقیقات و فناوری، در‌گیر مباحث ریاضی پژوهش در عملیات می‌گردند در حالی که هیچ دید مناسبی از وجوه مختلف پژوهش در عملیات ندارند

 پژوهش در عملیات همانند فیل مولوی شده است که هر‌کس از آن درک و تصوری دارد که همه پژوهش در عملیات نیست. این موضوع از دو جهت قابل بررسی است. یکی آنکه شکل‌گیری هر نظام یا حوزه علمی از ابتدا به صورت کامل و مدون انجام نمی‌شود و در طول زمان به موازات پژوهشها، توسعه یافته و شکل می‌گیرد. این روند در هر حوزه علمی امری طبیعی است. اما این روند به هر حال به جایی می‌رسد که تصویر روشن و مشترکی در پیش روی پژوهشگران آن حوزه باز می‌نماید و به نظر می‌رسد پژوهش در عملیات این روند را طی نموده است. جهت دیگر این است که عدم آشنایی کامل با مبانی، مفاهیم و اصول پژوهش در عملیات و نگاه تک بعدی باعث درک و تصور متفاوت شده است. بعضی پژوهش در عملیات را روشهای بهینه‌سازی می‌دانند و برخی دیگر روشهای آن را به عنوان علم و فن آمار می‌شناسند. در این مقاله سعی می‌گردد که تا حد امکان ابهام‌های فوق بر‌طرف شود و تصویر روشنی از پژوهش در عملیات ارائه شود


2-کدام عبارت؟

   همانطور که در عنوان مقاله دیده می‌شود عبارت پژوهش در عملیات به جای عبارت هم‌‌ارز آن یعنی تحقیق عملیات (اصغر‌پور 1372)، تحقیق در عملیات (آریا‌‌نژاد 1371) و پژوهش عملیاتی (مهرگان 1378) بکار رفته است. وجود چند عبارت به ظاهر متفاوت ممکن است باعث پدید آمدن ابها‌‌ماتی برای خواننده گردد. آیا هر یک از این عبارات به حوزه‌ای خاص اشاره می‌کنند؟ آیا هر یک از این عبارات در یکی از رشته‌‌های دانشگاهی بکار می‌روند؟ آیا رویکرد، نگرش و نوع پرداختن به مطالب با عبارت بکار رفته ارتباطی دارد؟

   در جامعه علمی و دانشگاهی ایران بیشتر دو عبارت تحقیق در عملیات و پژوهش عملیاتی بکار می‌رود؛ تحقیق در عملیات در رشته‌های مهندسی صنایع و ریاضی با گرایش تحقیق در عملیات و پژوهش عملیاتی در رشته‌های مربوط به مدیریت. قبل از پرداختن به تعاریف، لازم است توضیحی در خصوص عبارات هم‌ارز اشاره شده ارائه شود

   همانطور که در ادا‌مه نیز اشاره خواهد شد در سالهای جنگ جهانی دوم، تحقیق روی عملیات نظامی1 از اهمیت و اولویت بالایی برخوردار بود. کاربرد این نوع تحقیق در عملیات غیر‌نظامی2 باعث شکل‌‌گیری عبارت تحقیق در عملیات3 شد

   در بریتانیا این نوع تحقیق، تحقیق عملیاتی4 نامیده می‌شود که در ایران با عبارت پژوهش عملیاتی ترجمه شده است. دو عبارت تحقیق در عملیات و پژوهش عملیاتی بصورت مترادف بکار می‌روند با این تفاوت که پژوهش عملیاتی در بریتانیا و بخش‌هایی از اروپا و تحقیق در عملیات در دیگر جاها مورد استفاده قرار می‌گیرد

   واژه عملیاتی در عبارت پژوهش عملیاتی همان نقش صفتی را که واژه‌های تاریخی، پیمایشی و تطبیقی در پژوهشهای تاریخی، پیمایشی و تطبیقی بعهده دارند را به ذهن می‌آورد بدین معنی که پژوهش عملیاتی یک نوع روش پژوهش است. اما همانطور که بعداً نیز شرح داده می‌شود تحلیل سیستم، علوم مدیریت و تصمیم‌گیری حوزه‌هایی هستند که با تحقیق در عملیات مقایسه می‌شوند. تحقیق در عملیات همانند هر‌یک از حوزه‌های تحلیل سیستم و علوم مدیریت دارای اهداف، تئوریها، مبانی و روشهایی است که آن را به چیزی بیش از یک روش پژوهش تبدیل می‌کند. همچنین عبارت پژوهش عملیاتی، آنچه که تحقیق در عملیات (یعنی تحقیق روی عملیات و نه نوعی تحقیق بنام عملیاتی) در نتیجه آن شکل گرفته است را بیان نمی‌دارد. این تفسیر با عبارت «research into» توسط استین هارد (ساعتی 1988) برای تعریف و توضیح تحقیق در عملیات بکار رفته‌است و  با تأکیدی که پولاک، راسکوپف و بارنت (1994) بر این مطلب می‌کنند همخوانی دارد. با توجه به توضیحات بالا، بنظر نویسنده عبارت تحقیق در عملیات مناسبتر از عبارت پژوهش عملیاتی می‌باشد. عبارت پژوهش در عملیات، فارسی‌تر از عبارت تحقیق در عملیات است و از این پس پژوهش در عملیات را به جای تحقیق در عملیات بکار می‌بریم

برای دریافت پروژه اینجا کلیک کنید

مقاله مدل های فازی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله مدل های فازی در word دارای 30 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله مدل های فازی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله مدل های فازی در word

سرمقاله : مدل های فازی – چه هستند وچرا ؟  
«نظریه مجموعه‌های فازی»  
«منطق فازی»  
منابع  

بخشی از منابع و مراجع پروژه مقاله مدل های فازی در word

[1] L.A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-352,

[2] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controllers,” (parts I and II), IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, pp. 404-435,

[3] “The future is fuzzy,” Newsweek, May

[4] E.H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proc. IEE, 121, pp. 1585-1588,

[5] P.M. Larsen, “Industrial Applications of Fuzzy Logic Control,” International Journal of Man, machine Studies, Vol.12, No. 1, pp. 3-10,

[6] T. Takagi, and M. Sugeno, “Fuzzy identification of Systems and its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1, January-February

[7] F. Herrera, and J.L. Verdegay, “Fuzzy Sets and Operations Research: Perspectives,” Fuzzy Sets and Systems, Vol. 90, pp. 207-218,

سرمقاله : مدل های فازی[1] – چه هستند وچرا ؟

(J.C.Bezdek , IEEE Transactions on Fuzzy Systems , Vol. 1 , February 1993 – Edited by P.D.)

مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادی[2] می باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زاده[3] معرفی شد. [1]

ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیت‌هایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستم‌های حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند

تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوش‌ظاهر برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی است که برای عضویت در ویژگی‌های دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم   . به طور مشابه H توسط تابع عضویت (MF)[4]  که مطابق زیرتعریف می شود نیز توصیف می گردد

مجموعه H ونمودار  درسمت چپ شکل 1 نشان داده شده اند هرعدد حقیقی r یا درH است یا نیست از آنجا که  کلیه اعداد حقیقی  را به دو نقطه (1،0) می‌برد ، مجموعه Crisp معادل منطق دو مقداره است : هست یا نیست ، روشن یا خاموش ، سیاه یا سفید ، 1 یا 0 . درمنطق مقادیر  مقادیر حقیقت[5] نامیده می شوند، با ارجاع به این پرسش « آیا r درH است؟ » جواب مثبت است اگروتنها اگر   ؛ درغیراین صورت نه

مجموعه دیگرF ازاعداد حقیقی که نزدیک به 7 هستند را درنظر بگیرید ازآنجا که ویژگی «نزدیک به 7» نامعلوم است ، تابع عضویت یکتایی برای F وجود ندارد . به هرحال مدل کننده براساس پتانسیل کاربرد و ویژگی ها F باید تصمیم بگیرد که  چه باشد . ویژگی هایی که برای F به نظرخوب می رسد شامل این موارد است (I) حالت عادی یا طبیعی  (ii) یکنواختی (برای r نزدیکتر به7 ،‌ به 1 نزدیکتراست وبرعکس) و (iii) تقارن (اعدادی که فاصله مساوی از چپ وراست 7 دارند باید عضویت یکسانی داشته باشند)

با توجه به این موارد ضروری هرکدام از توابع نشان داده شده درطرف راست شکل 1 می‌تواند نمایش مناسبی برای F باشد.  گسسته است درحالی  پیوسته است ولی هموارنیست (نمودار مثلثی) یک نفر می تواند به راحتی یک MF برای F بسازد به نحوی که هرعدد عضویت مثبتی در F داشته باشد ولی انتظار نداریم برای اعداد « خیلی دوراز7» برای مثال 2000097 زیاد داشته باشیم! یکی از بزرگترین تفاوت ها بین مجموعه های Crisp ومجموعه‌های فازی این است که اولی همیشه MF یکتایی دارد درحالی که هرمجموعه فازی بی‌نهایت MF دارد که می توانند آن را نشان دهند. این درواقع هم ضعف است وهم قدرت ؛ یکتایی قربانی می شود ، ولی سود پیوسته ای که به خاطر انعطاف پذیری همراه خواهد داشت

مدل فازی را قادر می سازد که با بیشترین سود دریک موقعیت داده شده تطبیق داده شود. درتئوری مجموعه های قراردادی ، مجموعه های اشیایی واقعی برای مثال اعداد در H معادلند و به صورت ایزومورفیک[6] با یک تابع عضویت یکتا مانند  توصیف می شوند. ولی معادل مجموعه ای ، از اشیای واقعی  وجود ندارد. مجموعه های فازی همواره ( وفقط) توابعی هستند از «مجموعه جهانی[7]» به نام X به [] . این مسئله درشکل 2 نشان داده شده است که درواقع مشخص می سازد مجموعه فازی تابع   است از X به [] . همانطور که تعریف شده هرتابع [‌] یک مجموعه فازی است

  تازمانی که این در ریاضیات رسمی درست است ، بسیاری از توابع که دراین زمینه توصیف می‌شوند نمی توانند به طور مناسبی برای تصوریک مجموعه فازی تفسیر شوند . به عبارت دیگر، توابعی که X را به بازه واحد می برند ممکن است مجموعه های فازی باشند ولی تنها زمانی مجموعه فازی می شوند که یک سری ویژگی های غیر دقیق ولی ذاتی ، منطقی وتوصیفی را با اعضای X تطبیق دهند

اولین سؤال و در واقع سؤالی که معمولا درمورد این طرح پرسیده می شود ، مربوط است به رابطه فازی واحتمال . آیا مجموعه های فازی یک مبدل هوشمند برای مدل های آماری است ؟ درواقع نه . شاید یک مثال کمک کند

مثال 1: مجموعه همه آب ها رابه عنوان مجموعه جهانی درنظر بگیرید وهمچنین مجموعه فازی { مایعات قابل آشامیدن }‌=‌L را داریم . فرض کنید شما یک هفته بدون مایعات درصحرا بوده اید وحالا دو بطری A وB دارید. به شما گفته می شود که عضویت (فازی) مایع درون A در L ، 9/0 وهمچنین احتمال اینکه مایع درون B متعلق به L باشد هم 9/0 است. به عبارت دیگر A شامل مایعی است که با درجه عضویت 9/0 قابل شرب است درحالی که B شامل مایعی است که به احتمال 9/0 قابل شرب است . با این جفت بطری مواجه می شوید وباید ازیکی که انتخاب کرده اید بنوشید ، اول کدام را برای نوشیدن انتخاب می کنید ؟ چرا؟ بعلاوه بعداز مشاهده درباره محتوای دو بطری مقدار (محتمل) برای عضویت واحتمال چه می‌باشد؟ [ پاسخ این معما درکلاس بحث می شود ] سؤتفاهم رایج دیگردرباره مدل های فازی این است که آن ها به عنوان جایگزین هایی برای مدل های Crisp (یا احتمالاتی) پیشنهاد می شدند. برای توضیح این مسئله نخست از شکل های 1و2 توجه کنید که هرمجموعه Crisp فازی است ولی نه برعکس . بسیاری از طرح ها که ازایده فازی استفاده می کنند آن را از طریق محاط کردن وجا دادن بکار می برند یعنی ما تلاش می کنیم تا ساختارقراردادی را حفظ کنیم وبه آن اجازه می دهیم تا درخروجی هرزمان که می‌تواند و هرزمان که باید برجسته شود

مثال 2 : وضع ریاضی‌دان اولیه را درنظر بگیرید ، او می دانند که سری تیلور برای تابع حقیقی (زنگی شکل)  در  واگرا است ولی نمی تواند بفهمد چرا ، مخصوصا که f دراین نقاط بی نهایت بار مشتقپذیر است. امروزه به عنوان دانش معمول هر دانش آموز ازتوابع مختلط تابع  دو قطب در  دارد. بنابراین تابع مختلط که محاط شده به وسیله صورت کسر است ، نمی تواند بسط سری توانی همگرا درنقطه ای روی مرز دایره به شعاع واحد درصفحه داشته باشد ؛ درحالت خاص در  ، یعنی درنقاط حقیقی   . این مثال یک اصل کلی در ریاضیات مدلی را نشان می دهد . یک مسئله حقیقی (ظاهراً لاینحل) را درنظر بگیرید ؛ فضا را گسترش بدهید وجواب را دراین فوق مجموعه[8] خیالی جستجو کنید درنهایت جواب بدست آمده را به قیدهای حقیقی اولیه محدود کنید

درمثال 2 ما درمورد پیچیده سازی[9] تابع f بوسیله محاط کردن یا درنظر گرفتن اعداد حقیقی درصفحه مختلط صحبت کردیم ، درادامه با عمل آسان سازی[10] ازنتیجه کلی برای حل مسئله اصلی استفاده می کنیم . بسیاری از مدل‌های فازی از طرح مشابهی پیروی می‌کنند مسئله های واقعی که شامل عدم قطعیت های آماری نمی باشند ابتدا « فازی» می شوند سپس یک نوع آنالیز وتحلیل برروی مسئله بزرگترصورت می گیرد و درنهایت نتیجه برای حل مسئله اصلی خاص و ویژه می شود. درمثال 2 بازگشت به خط حقیقی عمل آسان سازی نامیده می شود ؛ درمدل های فازی این بخش ازفرآیند به عنوان دقیق سازی[11] شناخته می شود. این عمل معمولا ضروری است ، البته هرچند که ما به یک دانش آموز آموزش می دهیم تا « از ترمز خیلی زود استفاده کند» ولی درحقیقت پدال ترمز دریک لحظه باید درست وآماده عمل کند. به عبارت دیگرما نمی توانیم یک موتور را نصحت کنیم که « تند حرکت نکن » هرچند که این دستورالعمل از کنترل کننده فازی می آید ولی ما باید ولتاژومقدار آن را به مقدار مخصوص ومعینی تغییردهیم مثال 2 نشان می دهد که این به سختی یک ایده یا داستان است ؛ درعوض باید به آن به عنوان روشی سودمند توجه کنیم

مثال 3:به عنوان آخرین وشاید واقعیترین مثال درمورد کاربرد مدل های فازی ، سیستمی که درشکل 3 نشان داده شده را درنظر بگیرید که یک آونگ وارونه ساده را نشان می دهد . این آونگ برای چرخش درصفحه شکل وحول محور متصل به ماشین آزاداست. مسئله کنترل این است که با وارد کردن یک نیروی باز گرداننده F(t) درلحظه t ، درپاسخ به تغییرات خطی وزاویه ای موقعیت یا سرعت ، پاندول را درهمه زمان ها عمود نگه داریم . این مسئله می‌تواند به روش های مختلفی فرموله شود. دریکی از ساده ترین صورت ها از تئوری کنترل استفاده می شود . خطی سازی معادلات حرکت به یک مدل از سیستم منتهی می شود که ویژگی های ثبات واستحکام توسط امتحان بخش حقیقی مقادیر ویژه  ازماتریس  ثابت های سیستم مشخص می گردد. مسیر پایین در شکل 3 این حالت را نشان می دهد . همانطور که در وسط مسیر پایین شکل 3 نشان داده شده اگر  آنگاه پاندول ثابت وساکن خواهد ماند. این رویه درمهندسی کنترل بسیار پیش پا افتاده است تا آنجا که بسیار از طراحان اصلا درمورد استفاده ازاعداد موهومی درحل مسایل حقیقی فکرنمی کنند ، ولی واضح است که این روند دقیقا مانند مثال 2 است – یک مسئله حقیقی با گذر موقت به یک مجموعه بزرگتر وخیالی ، تحلیل موقعیت درابرمجموعه ودرنهایت با خاص کردن[12] نتیجه برای بدست آوردن جواب دلخواه حل می شود

 مسیر بالا درشکل 3 راه حل دیگری را برای این مسئله کنترل نشان می دهد که برپایه مجموعه های فازی است. این روش هم ، برای موازنه وتثبیت پاندول مشهور ومطرح است وراه حلی را ارائه می کند که دربعضی موارد بسیار بهتراست ، برای مثال کنترل کننده فازی نسبت به تغییرات درطول وجرم پاندول حساسیت بسیار کمتری دارد [2]. دوباره به اصل محاط کردن توجه کنید : فازی کردن ، حل ، عمل عکس فازی کردن ، کنترل مدل های فازی با موارد مشابه به تفاوت ندارند. بعضی مواقع بهترعمل می کنند وبعضی مواقع هم نه

 این جداً تنها معیار نیست که بایستی برای قضاوت هر مدل بکار برد، و این روزها مدارک بیشتری وجود دارد که شیوه های فازی برای مسایل واقعی اغلب جایگزین خوبی برای طرحهای آشناتر و محبوب‌تری می‌باشند. این نقطه ای است که بحث ما اکنون به آن بر می‌گردد. اکنون اجازه دهید اندکی در باره تاریخ مجموعه های فازی بحث نماییم. موفقیت عظیم کاربردهای تجاری که حداقل تا حدی مبتنی بر تکنولوژی های فازی توسط شرکتهای ژاپنی می باشد کنجکاوی بسیاری را درباره سودمندی و استفاده از منطق فازی برای کاربردهای علمی و مهندسی بر انگیخته است. در طی پنج یا ده سال گذشته مدلهای فازی جانشین تکنولوژی های قراردادی تر در کاربردهای علمی و سیستم های مهندسی خصوصاً در سیستم های کنترل و شناخت الگو گردیده‌اند. اخیراً مقاله ای در Newsweek خاطر نشان کرد که ژاپنی ها هزاران الگو در لوازم فازی که تنوع بسیاری دارند منجمله ماشین لباسشویی، تهویه هوا، دوربین تلویزیونی، جاروبرقی ، کنترل ترن زیر زمینی و کشتی و اتومبیل بکار برده‌اند

اساساً این تکنولوژی است که باعث علاقه در این حوزه شده است. از 1965، مؤلفان بسیاری موارد فازی را در بخشهای مربوط به ریاضیات، علوم و مهندسی تعمیم دادند. به هر حال علاقه به مدلهای فازی تا زمانی که کاربردهای میدانی آن آشکار نشد بسیار عمومیت نداشت. دلایل این تأخیر در محبوبیت بسیار می باشد. اما شاید دقیق ترین توضیح در حقایق برحسته که در توسعه هر تکنولوژی مسئله ای اساسی می باشد نهفته باشد که به طور موجز در شکل 4 نشان داده شده است

محور افقی شکل 4 زمان است و محور عمودی انتظار است و انتظار چه کسی؟ خوب، معمولاً انتظار آدمهایی که تاوان توسعه تکنولوژی را می پردازند، اما توصیه می کنم در اینجا این محور را به مفهوم وسیع تری بگیرید، برای سودمندی، البته از چشم مصرف کننده. بخش اساسی و بسیار پر اهمیت شکل 4 خط مجانب است که به تحویل تکنولوژی به ارزش مورد انتظار بسیار پایین تری از آنچه که مصرف کنندگان اولیه در نظر داشتند منجر می شود. سالهای مربوط به محور زمان مربوط به مدلهای فازی هستند و البته با بهترین تخمین (به استثنای مورد اولی) وقتی به این شکل نگاه می کنید ممکن است مایل به حذف این مدلها و جایگزینی تکنولوژی جدید مطلوب خود برای موردی که نشان داده شده باشید. هر تکنولوژی سیر تکامل خود را دارد و همه آنها الگویی را که در شکل 4 نشان داده شده پیروی نمی کنند.(اما ممکن است شگفت زده شوید که ببینید چند تای آنها از این الگو پیروی می کنند. برای مثال، سعی کنید که با در نظر گرفتن تاریخ، افراد و حوادث مربوط به آنان را مشخص کنید برای نمونه شبکه عصبی محاسباتی، هوش مصنوعی، فرکتال ها، اعداد مختلط و غیره هر تکنولوژی جدید با خوش بینی و ساده نگری شروع می گردد . مخترع یا مخترعین در ایده های خودشان غرق می شوند، همکاران نزدیک آنها هستند که، هیجان بسیار زیادی را تجربه می کنند. اکثر تکنولوژی ها بیش از حد خوش بینانه هستند و اغلب بیش از ایجاد درآمد برای ادامه کار را نوید می دهند زیرا منبع مالی و کسب در آمد بخش جدایی ناپذیر رشد علمی است که بدون آن انقلابی ترین ایده ها و تخیل بسیار بالا از مرحله جنینی عبور نمی کنند. Hype ساخت دست طبیعی است که بیش از حد خوش بینانه است و اکثر تکنولوژی ها به سرعت ساخته می‌شوند که به نوک Hype برسند. در پی آن، همیشه تقریباً عکس العمل آن ایده ها وجود دارد که کاملاً رشد نیافته اند، و این ناچاراً به شکست می انجامد و در امتداد آن بد بینی را به دنبال دارد. بسیاری از تکنولوژی های جدید تا این نقطه تکامل می یابند و سپس ناپدید می شوند

مواردی نیز تداوم می یابند. زیرا فردی، سودمندی در آن برای (=سوء استفاده کننده واقعی) ایده های اساسی می یابد

 استفاده یا سودمندی خوب[13] به چه معناست؟ برای مثال، امروزه سودمندی های فراوانی در اعداد حقیقی برای اعداد مختلط وجود دارد، همانطور که در مثال های 2 و 3دیدیم. اما ریاضی دانان بسیاری تا زمانی که ریاضی دانانی چون وسل[14]،آرگاند[15]، همیلون[16] و گاوس[17] اعداد موهومی را از نقطه نظر هندسی به وجود آوردند، این چنین فکر نمی کردند و البته در بافت مدلهای فازی استفاده خوب مترادف با ترکیب محصولاتی است که در بالا بدان اشاره شد. علاقه به سیستم های فازی در حوزه دانشگاهی، صنعت و دولت همچنین با رشد سریع کنفرانس های ملی و بین المللی روشن می گردد. همچنانکه در بالا بدان اشاره شد کاربردهای موفقیت آمیز مدلهای فازی به لحاظ کاربردهای تجاری در ژاپن بسیار شهرت یافته اند

MITI در ژاپن LIFE[18]، را در 1988 با بودجه سالانه حدود 24000000 دلار (دلار آمریکایی) برای هفت سال شروع کرد. ]000[

«نظریه مجموعه‌های فازی»

[1]-Fuzzy

[2]-Conventional

[3]-Zade

[4]-Membership Function

[5]-truth

[6]-isomorphic

[7]-Universe Set

[8]-Superset

[9]-Complexifying

[10]-decomplexification

[11]-defuzzification

[12]-Specializing

[13]-good uses

[14] -Wessel

[15] -Argand

[16] -Hamilton

[17] -Gauss

[18] -Laboratory of Industrial Fuzzy Engineering

 

برای دریافت پروژه اینجا کلیک کنید

مقاله نظریه پیچیدگی در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله نظریه پیچیدگی در word دارای 24 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله نظریه پیچیدگی در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله نظریه پیچیدگی در word

چکیده 
مقدمه 
نظریه پیچیدگی 
مقدمات کمی سازی پیچیدگی 
تکنیکهای کمی سازی 
الف) تکنیکهای رویان 
معیار خود سازمان دهی. 
ب) دیدگاههای دیگر 
نتیجه گیری 
منابع 

بخشی از منابع و مراجع پروژه مقاله نظریه پیچیدگی در word

1- Meyer W and Isenberg R (1990). Knowledge- based factory supervision: EP 923 Results. Int J CIM 3:206-
2- Pai C and Naylor P (1996). Yet it is painful but are not alone-Application of supply chain planning techniques from cognate industries. Presented at the 2nd International conference on production planning and control in the metals Industry, London, UK, November 12-14, 1996. (Available from 12 Technological Inc. Eagle House, The Ring, Bracknell, Berks (RG12 ITB)
3- Efstashiou J, Calinescu A and Bermejo J (1996). Modeling the complexity of production planning and control. Processing of the 2nd International Conference on Production planning and Control in the Metals Industey, institute of Materials, London, pp 60-
4- Bauer A et al (1991). Shop Floor Control System: from Design to Implementation. Chapman & Hall: London, UK
5- Lewis FL, huang HH, pastravanu OC and Gurel A (1995). Control system design for flexible manufacturing system. In: Raouf A and Daya MB (eds). Flexible Manufacturing Systems: Recent Developments. Elservier Science: Amsterdam; New York
6- Slack N et al (1995), Operations Management. Pitman publishing: London, UK
7- Neely A, Gregory M and pllats K (1995). Performance measurement system design. Int J Opns & Prod Mgmt 15 (4): 80-
8- Stoop PPM and wiers VCS (1996). The complexity of scheduling in practice. Int J opns & Prod Mgmt 16 (10): 37-
9- McKay KN, Safeyeni FR and Buacott JA (1995). Common sense realities of planning and scheduling in printed circuit board production. Int Prod Res 33(6): 1585-
10- Berjemo J, Calinescu A, Efstathiou J and Schrin J (1997). Dealing with uncertainty in manufacturing: the impact on scheduling. In: Kochhar A (ed). Proceeding of the 32nd international matador Conference, Macmillan Press, UK. Pp 149-
11- Frizella G and Woodcock E (1994). Measuring complexity as an aid to developing operational strategy. Int J Opns & Prod Mgmt 15(5): 26-
12- Frizelle GDM. (1996). An entropic measurement of complexity in manufacturing operations Research. Report. Departement of Engineering, University of Cambridge, UK
13- Calinsecu A, Efstathiou J, Berjemo J and Schrin J (1997). Modeling and simulation of a real complex process-based manufacturing system. In: Kochhar A (ed). Processing of the 32nd International Matador Conference, Macmillan Press, UK. Pp137-
14- Calinescu A, Efstathiou E, Berjemo J and Schrin J (1997). Assessing decision-making and process complexity in a manufacturer through simulation. In: Brant D (ed). Processing of the 6th IFAC Symposium on Automated Systems Based on Human Skill, IFAC, Germany, pp 159-

چکیده

پیچیدگی جهان در تضاد با سادگی قوانین فیزیکی قراردارد. در سالهای اخیر رفتارهای غیر خطی و پویای سیستمها به طور وسیع مطالعه شده است، یعنی رفتارهایی که منجر به پیچیدگی و در نهایت آشوب می شوند. مطالعه این رفتارها، منتهی به وضع قوانین جدیدی در طبیعت نشده ولی باعث شدهاند تا بتوانیم قوانین موجود را عمیقتر درک کنیم. یکی از نکات جالب توجه در پیچیدگی این است که به رغم تصورات پیشین، قوانین ساده میتوانند منجر به بروز رفتارهای بسیار پیچیده شوند. این موضوع میتواند منجر به شناخت عمیقتر عملکرد سیستمها و رفتارهای اجتماعی و سازمانی شود. از همین روست که در حال حاضر اندازه گیری پیچیدگی و راههای کاهش آن در سازمانها و فرآیندهای تصمیم گیری به یکی از مباحث روز تبدیل شده است. همین گستردگی مبحث پیچیدگی باعث شده است که مشارکت تمام علوم نظیر ریاضایت، فیزیک، مکانیک شارهها، شیمی، مدیریت در تحلیل آن اجتناب ناپذیر شود

در مقاله حاضر سعی شده است تا کلیاتی از پیچیدگی و انواع آن ارائه شود و نقش آن در طبیعت و سیستمهای تولیدی مورد مطالعه قرار گیرد

مقدمه

یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. به کارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازهگیری و کمی کردن نیز بهوجود می آورد

نظریه پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریه پیچیدگی را گنگ و مبهم میدانند و آن را شایسته عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسه غیر اقلیدسی ریمان، آمار بولتزمن و نظریه مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند

نظریه پیچیدگی

بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. بهطور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمره آنها قرار می‌گیرند

پیچیدگی ایستا (نوع اول). براساس نظریه پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریه پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشه کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زنده حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئله تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست

برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوه سلول، به علاوه ارگانیسم، به علاوه اکوسیستم، به علاوه سیاره زمین و ;). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد

پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویه دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایه آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!)
تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام می‌دهد؟» و به دنبال آن «چگونه این کار را انجام می‌دهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیده مورد مطالعه ایستاست یا آنکه دارای تغییرات دوره‌ای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونه‌های متعدد است. روابط ریاضی مورد استفاده به گونه‌ای هستند که برای داده‌های یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکته اساسی در نظریه پیچیدگی است. ما در بسیاری از اوقات ناچار می‌شویم تا به طور مصنوعی پیچیدگی پدیده مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصه‌هایش تعریف می کنیم که در طول زمان بدون تغییر باقی می‌مانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریه پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبه‌های آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود

پیچیدگی تکاملی (نوع سوم). یکی از پدیده‌های مهم در اطراف ما پدیده‌های ارگانیک هستند. بهترین مثالهای مربوط به این پدیده‌ها، مربوط به نظریه نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا می‌کنند و سیستمهای دیگری ابداع می‌شوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی می‌شود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته می‌شد. می‌توان همین مفهوم تغییرات غیردوره‌ای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه می‌توان نام علم را بر آن نهاد؟
پاسخ این سئوال به مبحث الگو باز می‌گردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا می‌توانند وجود داشته باشند و در حقیقت می‌توان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکرده‌اند. با بررسی تعداد زیادی از سیستمهای متفاوت، می‌توان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنمایی‌هایی کلی ارائه می‌کنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیش‌بینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونه‌ای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواسته‌ای که به نظر نمی‌آید از دیدگاه تکاملی قابل بررسی و تعمیم باشد

پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریه پیچیدگی محسوب می‌شود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانه سیستمهای باز (نظیر مردم) با همدیگر تلفیق می‌شوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونه‌ای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمی‌گنجد. در اینجا می‌بایستی عملکردها و وظایف سیستم به گونه‌ای تعریف شوند که چگونگی ارتباط آنها با جهان وسیع خارج از سیستم مشخص شود. از انواع قبلی سیستمهای گسسته و سیستمهای خود نگهدارنده، به نظر می‌آید که به مفهومی از پیچیدگی رسیده‌ایم که نمی‌توان آن را از دیگاه کیفی یک سیستم جدا دانست

عملاً سیستمهای خود تکاملی نظیر بوم‌شناسی و زبان سعی دارند عملکردهای خود را کاملاً با تطابق با محیط شکل دهند و عملاً از این دیدگاه می‌توان روش شناسی‌ای را تدوین کرد که طی آن فرایند طراحی از درون سیستم به برون آن سوق داده شود. ما می‌توانیم به جای طراحی خود سیستم، محیط آ ن را طراحی کنیم (محدودیتها) واجازه دهیم تا سیستم خود به گونه‌ای تکامل یابد تا پاسخ صحیح را بیابد، نه آنکه پاسخی از طرف ما به سیستم تحمیل شود. این دیدگاه در فناوری ارگانیک، دیدگاهی جدید و نتایج آن در حال حاضر در مهندسی ژنتیک و طراحی مدارها در حال بررسی است

از دیدگاه نظریه پیچیدگی، بسیار مایل هستیم پیش‌بینی کنیم کدام حل غالب از بین شقها و محدودیتهای گوناگون رخ خواهد داد

مقدمات کمی سازی پیچیدگی

 

برای دریافت پروژه اینجا کلیک کنید

مقاله نقش ریاضی در مسئله یابی فرایند مدیریت روابط مشتری (CRM) در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله نقش ریاضی در مسئله یابی فرایند مدیریت روابط مشتری (CRM) در word دارای 16 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله نقش ریاضی در مسئله یابی فرایند مدیریت روابط مشتری (CRM) در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله نقش ریاضی در مسئله یابی فرایند مدیریت روابط مشتری (CRM) در word

مقدمه: 
روشهای حل مسئله: 
1) جستجو برای الگو 
2) رسم شکل 
3) صورتبندی مسئله معادل 
4) تغییر مسئله 
5) انتخاب نمادهای مناسب 
6) استفاده از تقارن 
7) تجزیه به حالتهای ساده تر 
8) کار عقب رونده 
9) بررسی نقیض 
10) زوجیت 
11) بررسی حالتهای حدی 
12) تعمیم . 
هزینه یک سیستم CRM چقدر است ؟ 
اما عوامل هزینه CRM عبارتند از : 
چگونه یک اجرای CRM قوی داشته باشیم؟ 
چه سازمانی مسئول و پاسخگوی CRM است؟ 
نتیجه گیری: 
منابع و ماخذ: 

بخشی از منابع و مراجع پروژه مقاله نقش ریاضی در مسئله یابی فرایند مدیریت روابط مشتری (CRM) در word

An introduction to CRM process. Margaret & David May,

Manage your problems David Medina.Feb,

Problem solving

What is CRM

Learning Math 2002 J.Fozen

Operational Research (OR). A.Azar.2002.Samt.ISBN.964-455-798-

 

مقدمه

درست است که یک سیستم CRM با لوگو و آرم یک شرکت در کاتالوگها ویا تبلیغاتهای آن به عنوان یک سیستم CRMقوی وبی نظیر معرفی می شود . اما باید توجه کرد که یک سیستم هر اندازه هم بی نظیر و قدرتمند باشد و کارشناسان CRM، بازه زمانی X را برای نصب و اجرای آن مشخص نمایند؛ بازهم مطمئن باشید که مدت زمان پیش بینی شده همواره مدت زمان دقیق نخواهد بود. زیرا عوامل محیطی زیادی درآن دخیل اند

 پس در واقع : نصب و اجرای CRM یک فرایند وقت گیر است

ضمنا” باید توجه کردکه البته این وقت گیر بودن آن اگر منطقی و بدون تاخیرهای اضافی صورت بگیرد به نفع خود بنگاه و سازمان می باشد؛ چون تاثیر پایدارتری را خواهد داشت

 اگر

یک سیستم CRM زود تاثیر و بی ثبات باشد به درد بخور نیست

چون تاثیر فوری اما آنی خواهد داشت و در نتیجه فایده ای را که ما از یک سیستم CRM انتظار داریم را برآورده نخواهد کرد

 بهترین تصمیم گیری زمانی انجام می گیرد که عقلانی باشد نه رضایت بخش

ممکن است روشی در کوتاه مدت جواب دهد ولی در دراز مدت تاثیر بی ثبات و کمتری داشته باشد. پس انتخاب آن به صلاح نیست وباید در انتخاب آن مناسب ترین و با صرفه ترین و عقلانی ترین روش را انتخاب کنیم

برای رسیدن به مسئله ، ابتدا باید مسئله یابی کنیم. پس در CRM نخستین گام قبل از هر گونه اقدام تشخیص مسئله یا مسئله یابی است .و هر عملی قبل از انجام آن به صرفه نیست و وقت گیر می باشد .البته مسئله یابی انواع مختلفی دارد که می تواند به طور مستقیم یا غیر مستقیم و ضمنا” از طریق افراد داخل یا خارج سازمان صورت گیرد

مواردی از این روشهای مسئله یابی و حل مسئله درذیل آمده است

روشهای حل مسئله

همواره حل مسئله را با نوعی ادراک شهودی از مسئله شروع می کنیم وبا برسی چند حالت خاص به سوی الگوسازی برای حل کامل آن جلو می رویم

با توجه به نوع مسئله می توان از بعضی موارد ذکر شده صرف نظر کرد

ـ عمده ترین روشهای حل مسئله عبارتند از

1) جستجو برای الگو

همواره کار حل مسئله را با نوعی ادراک شهودی از مسئله شروع می کنیم و با بررسی چند حالت خاص به سوی الگوسازی برای حل کامل آن جلو می رویم

2) رسم شکل

در هر مسئله که امکان پذیر باشد رسم یک شکل (اعم از هندسی با یک نمودار و غیره ) می تواند در یافتن حل مسئله الهام بخش باشد و رابطه بین اجزا مسئله را بهتر نمایان می سازد

3) صورتبندی مسئله معادل

در بخش قبل دیدیم که گام نخست در حل مسئله، عبارت است از جمع آوری داده ، جستجو ، فهمیدن مسئله ، برقراری ارتباط بین اجزا ، حدس زدن و تجزیه و تحلیل، که در کل همان مسئله یابی می باشد. ولی اگر همه این کارها به روش معقولی میسر نباشد چه کنیم؟ یعنی اینکه ممکن است کارهای محاسباتی خیلی پیچیده باشد ویا به سادگی نتوانیم حالتهای خاصی را مطرح کنیم تا به بینش لازم برسیم . آنچه در چنین شرایطی توصیه می شود این است که مسئله را با مسئله معادل ولی ساده تر جایگزین کنیم . راه حل کلی در اینگونه معادل سازی به بینش و تجزیه های عمومی باز می گردد ولی کارهایی از قبیل دستکاریهای جبری یا مثلثاتی و تفسیر مجدد مسئله با زبانی دیگر می تواند موثر باشد

4) تغییر مسئله

در بعضی مسائل می توانیم مسئله مورد نظر را به مسئله دیگری تبدیل کنیم . این دو مسئله لزوما” معادل یکدیگر نیستند ولی حل مسئله دوم حل مسئله اول را نتیجه می دهد

5) انتخاب نمادهای مناسب

 

برای دریافت پروژه اینجا کلیک کنید

تحقیق هنر ریاضیات در word

برای دریافت پروژه اینجا کلیک کنید

 تحقیق هنر ریاضیات در word دارای 104 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق هنر ریاضیات در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه تحقیق هنر ریاضیات در word

مقدمه    
فصل اول : زیباشناسی ریاضیات 
1-1 واژه شناسی و تعاریف    
1-2 ریاضیات کلید طلایی برای زیبایی شناسی    
1-3 نقش ریاضیات در زندگی بشر و در شناخت طبیعت    
1-4 انگیزه پیشرفت ریاضیات    
1-5 هنر و کاربرد ریاضیات    
1-6 ریاضیات و زندگی    
1-6-1  فاکتور گیری(خاطره ای از آقای x)    
1-6-2  در جستجوی یک رابطه ریاضی در خطبه عقد    
1-6-3   منطق و سرود ملی ژاپن    
1-7 ریاضیات و علوم دیگر    
1-8  ریاضیات و صنعت    
1-9   نقش ریاضیات و هندسه در تقویت قوه تفکر    
1-10  آموزش ریاضی به کودکان    
1-11ریاضیات در موسیقی    
1-11-1  اهمیت عدد 12    
1-11-2  تقارن و موسیقی    
1-11-3  ریاضیات و نت‌نویسی    
1-11-4  سیستمهای شمارشی در موسیقی    
1-12  نقش ریاضیات در مسئله یابی فرایند مدیریت روابط مشتری (CRM)    
1-13  کاربرد منشور در طبیعت    
1-14 کاربردی از ریاضیات در اعمال جراحی زیبایی    
1-15  حتمیت و قطعیت    
فصل دوم :کاربرد ارقام
2-1 مقدمه    
2-2  رقم صفر    
2-3  رقم شش “رقم عدد شیطانی”    
2-4 رقم هفت    
2-5  رقم سیزده    
2-6  رقم نوزده    
فصل سوم : نسبت طلایی
3-1  جواهر هندسه    
3-2  آشنایی با نسبت طلایی  GOLDEN RATIO)    
3-3 کاربرد های نسبت طلایی    
3-3-1  هنر نسبت طلایی در اهرام مصر    
3-3-2  نسبت طلایی در خوشنویسی    
3-3-3   نسبت طلایی در عکاسی    
3-3-4   نسبت طلایی در بدن انسان    
3-3-5   نسبت طلایی در دندان پزشکی    
3-3-6 نسبت طلایی در میان جانداران    
3-3-7   نسبت طلایی در گیاهان    
فصل چهارم :نظریه فازی
4-1  نظریه مجمو عه های فازی    
4-2 ریشه های تاریخی تفکر فازی و پیدایش مجموعه های فازی    
4-2-1  تعاریف منطق و پیشینه آن    
4-2-2  ریشه های تفکر فازی    
4-2-3  پیدایش فازی    
4-3 اساس کار محصولات فازی    
4-4  تفکر فازی در آموزش ریاضی    
4-5  همزیستی زیست شناسان با ریاضی دانان    
فصل پنجم : فراکتال ها
5-1  هندسه جهانی پرآشوب(فراکتال ها)    
5-2  تعریف آشوب    
5-3  فراکتالها    
فصل ششم : تقارن
6-1  تقارن انعکاسی    
6-2  تقارن دورانی    
6-3  تقارن انتقالی    
6-4  تقارن در ریاضی    
6-5  تقارن در فیزیک    
6-6  تقارن انعکاسی در زمان    
6-7نمونه ها یی از اشکال تقارنی    
نتیجه گیری     
منابع    

بخشی از منابع و مراجع پروژه تحقیق هنر ریاضیات در word

1ربیعی،محمد،مجله اتحاد،شماره ی 1 ،سال 1383

2رضوی ،ملیحه ،ریاضیات و طبیعت ،پایان نامه جهت اخذ دوره کارشناسی ریاضی ،مرکز تربیت معلم شهید خورشیدی ،سال

3 شهریاری،پرویز ،فرهنگ ریاضیات ،نشر شارع ،سال 1385

4 گویا ،زهرا ،مجله های رشد آموزش ریاضی

چکیده

ریاضیات در زندگی کاربرد زیادی دارد ولی طوری باید به ریاضی نگاه کرد که آن رشته ای از زندگی باشدواگر طرز راه حل چنان باشد که زود به جواب برسیم خیلی آسانتر می باشد.از جمله این کاربردها،کاربردهای فردی است، چون برای کارهایی که انجام می دهیم به طور روزانه اعمال ریاضی به کار میرود مانند ضرب، تقسیم، برای خریدهای روزانه و ;دانستن علوم ریاضیات در کارهای روزمره حتی اگر بسیار اندک و کم باشد نیز می توان راه گشای مفیدی در زندگی انسان ها باشد با پیشرفت علوم و تکنولوژی می توان گفت ریاضی در دنیا حرف اول را می زند. پس باید همیشه ریاضی را دانست و از آن بهره مند گرفت

اگر به اطراف خود بنگریم  مجموعه ای از اشکالی را می بینیم که هر روز از برابر چشمان ما می گذرد: مربع های پهن یا باریک ، کره ها و دایره های بزرگ و کوچک و; و این همان هندسه است. هندسه همان هنر ریاضی است هنری که به اشکال می پردازد و با زبان مخصوص به خود دنیای اطراف ما را توصیف می کند.و قدرت درک و استدلال و تجزیه و تحلیل را بالا می برد

چون زبان طبیعت به زبان ریاضی است پس ریاضی کمک به فهم رابطه میان عناصر طبیعت می کند

ریاضیات پایه همه علم هاست و تنها تفاوت و در واقع مزیتی که بر سایر علم ها دارد ، منطق آن است

اهمیت فوق العاده ای که ریاضیات ، در جامعه ی امروزی و در فعالیت های گوناگون تخصص ها دارد، بر کسی پوشیده نیست . باوجود این ، خیلی زیاد نیستند کسانی که علاقمند به ریاضیات باشند.البته تنها کسانی که کارو فعالیتشان به ریاضیات مربوط میشود،علاقمند به ریاضیات نیستندبلکه کم هم نیستند مشتاقانی که ساعت های فراغت خود را،باریاضیات می گذرانند.همه ی این ها چه حرفه ای ها و چه علاقمندان ، نه تنها فایده و اهمیت ریاضیات را می شناسند بلکه در ضمن به ریاضیات شوق می ورزند و می توانند زیبایی و ظرافتی که در مسأله ها ، قضیه ها و روش های ریاضی وجود دارد را احساس کنند

احساس و منطق را با هیچ نیرویی نمی توان از هم جدا کرد و هر جدایی ساختگی منجر به تحریف هر دوی آنها می شود . هر احساس اگر احساس واقعی باشد، خردمندانه است چراکه احساس واقعی نمی تواند جدا از اندیشه و خرد آدمی پدید آید

مقدمه

چه چیزی در ریاضیا ت وجود دارد که آن را نمونه عالی دقیقه و کمال مطلوب علومی که بر پایه این امتیاز نرسیده اند می سازد؟آرزوی پژوهندگان جوان،لااقل در میدان زیست شناسی و علوم اجتماعی،این است که معیارها وشیوه هایی را گسترش دهند که به این علوم امکان دهد تا در زمره علومی که راه رشد و تکامل دائمی را می پیمایند و تسلط ریاضیات را پذیرفته اند در آیند

ریاضیات  نه تنها الگویی است که علوم دقیقه می کوشند تا ساختمان خود را مطابق با آن طرح ریزی کنند،بلکه ملاتی است که اجزای این ساختمان را به یکدیگر می چسباند و آن را پا بر جا نگاه می دارد.در واقع تا وقتی که یک پدیده مورد بررسی به صورت قانونی ریاضی مورد مطالعه قرار نگرفته باشد،نمی توان آن را حل شده تلقی کرد

چرا این اعتقاد به وجود آمده است که فقط  جریانات ریاضی می توانند برای مشاهده تجربه و تفکر، آن دقت و آگاهی و اطمینان محکمی را که علم واقعی ایجاب می کند فراهم آورند؟

جهان علم همواره برای ریاضیات ارزش خاصی قائل بوده و آن را بالاتر از سایر رشته های دانش تلقی کرده است. یکی از علل و موجبات این امر آن است که در ریاضیات صحبت از احکامی است مسلم و قطعی و محقق، حال آنکه در مورد رشته های دیگر علوم این طور نبوده و احکام آنها ،کمابیش، قابل بحث و انتقاد است.و چه بسا آنچه که مورد تایید و توجه است، فردا ، با کشف واقعیت های تازه، بی اعتبار می گردد و جای خود را به نظریه های نوین می سپارد. بعلاوه قضیه ها  و احکام ریاضیا ت بحث در باب موضوعات واقعی است نه آنچه صرفا زاییده تخیلات بشر باشد.از این گذشته،پس از آنکه اولیه و اصلی (علوم متعارفه) این علم و همچنین روشهایی که باید به کمک آنها سایر قضایا را استنتاج کرد مورد توافق وحدت نظر قرار گیرد،کلیه کسانی که به حل وبحث قضایا و احکام ریاضی بپردازند،به نتیجه منطقی یکسان خواهند رسید

شهرت ریاضیات به عنوان علوم دقیقه علت وسبب دیگری هم دارد و آن اینکه  تنها ریاضیات است که می تواند به علوم طبیعی تا حدی قطعیت بخشد و آن ها را به صورتی دقیق تر و کلی تر در آورد.حصول این معنی بدون ریاضیات امکان ندارد

ریاضیات واقعا می تواند کلید شناخت دنیای فیزکی و بیولوژیکی ابزار بسیار موثری برای ایجاد یک نظام ذهنی منطقی برای جامعه باشد

حکیم عمر خیام، ریاضیدان ، اختر شناس و رباعی سرای بزرگ نیمه دوم سده ی پنجم و ابتدای سده ی ششم هجری، در مقدمه کتاب جبر خود می گوید:”ریاضیات به پیش گامی سزاورتر است.”

کارل فردریک گوس،ریاضیدان بزرگ آلمانی، ریاضیات را “سلطان همه دانش ها ” می دانست

آ.د.الکساندرف ریاضیدان و فیلسوف معاصر روسیه،موضوع را روشن تر می کند، او می گوید:”سر چشمه زنده بودن ریاضیات ، در این جاست که مفهوم ها و نتیجه گیری های آن، ناشی از واقعیت است و کاربرد فراوانی در سایر دانش ها، صنعت و در همه زمینه های مربوط به زندگی بشر، پیدا می کند واین مهم ترین مطلب برای درک ریاضیا ت است

ولی بحث به همین جا خاتمه نمی یابد.باید گفت اگر در تصور خود، ریاضیات را از مجموعه دانش های موجود بشر خارج کنیم ، نه تنها تمامی صنعت و تمدن امروزی فرو می ریزد و تمامی دانش های دیگر ، تکیه گاه اصلی خود را از دست می دهند،حتی، انسان در زندگی روزمره عادی و ابتدائی خود هم فلج خواهد شد و تمامی روابط انسانی موجود، به صورتی فاجعه آمیز ، از هم خواهد گسست-بی جهت نیست که “ریاضیات”-دست کم به معنای مقدماتی و ابتدایی آن-همیشه با بشر همراه بوده است و تاریخی به قدمت تاریخ بشر دارد

همه ما از کاربرد ریاضیات در دانش هایی همچون اختر شناسی،فیزیک، مکانیک آگاه هستیم، ولی در زمان ما ریاضیات توانسته است دامنه نفوذ خود را ، حتی در دانش هایی که به کلی دور از ریاضیات به حساب  می آمدند،همچون تاریخ نویسی، پزشکی،روانشناسی، زبان شناسی، جامعه شناسی و غیر آن گسترش دهد و دانش های مثل اقتصاد،زیست شناسی،زمین شناسی، و غیره تا حد زیادی به طور کامل،چه از نظر به کار گرفتن رابطه های ریاضی چه از نظر استفاده از روش های ریاضی، شکل ریاضی به خود بگیرند

در اینجا سخنی از هرمان ویل ریاضیدان معروف می آوریم:”باید توجه داشت که ریاضیات، نقشی بسیار جدی در شکل گیری فرهنگ معنوی ما دارد. دانش ریاضی هم، شبیه آفرینش های اساطیری، ادبیات و موسیقی، یکی از حوزه های خلاقیت خاص را تشکیل می دهد که، در آن، ماهیت انسانی او، یعنی کشش به سمت فضای معنوی زندگی، که خود یکی از مظاهر هماهنگی جهانی است، آشکار می شود

گر چه دریای ژرف ریاضیات را کرانی نیست ولی با توجه به نیاز جامعه، در شناسایی طبیعت متغیر و تحول به منظور شناخت ناشناخته ها، ایجاب می نماید که هر چه بیشتر با علم ریاضی و مفاهیم کاربردی آن آشنا گردیم

1-1 واژه شناسی و تعاریف

نخستین مفهوم ها و ایده آل های ریاضی ،به طور مستقیم از طبیعت ،محیط زندگی و نیاز های عملی انسان گرفته شده اند. کشیدگی درخت و راست بودن قامت انسان و دست ها و پاها ی او ،در نقاشی های انسان های نخستین به صورت خط راست و رنگین کمان طرح صورت و سر آدمی به صورت خط خمیده در آمده اند و انگشت های دست و سپس سنگریزه ها برای شمردن بکار گرفته شد. به این ترتیب نخستین مفهوم های ریاضی به صورتی مبهم و آمیخته با دیگر مفهوم ها شکل گرفت

1   واژه ریاضیات:ریاضیات به جای واژه یونانی «ماته ماتیکه » mathematike گذاشته شده است که خود از «ماته ما »  mathema به معنای «دانش » و «دانایی » آمده است
2      طبیعت : بخشی از جهان که بشر در ساختن آن دخالتی ندارد و عینیت داشتن و در خارج از ذهن محقق باشد
3     تقارن : مطابقت شکل ها و ترتیب اجزا در دو سوی یک نقطه یا صفحه را می گویند
4  خود متشابهی : اگر سیستمی به آن درجه بی نظمی برسد که اگر یک قطعه کوچک آن را بزرگ کرده و تکرار کنیم کل سیستم تولید شود ،به آن سیستم خود مشابه گویند
5  فراکتال : واژه فراکتال را در سال 1975 از کلمه لاتین فراکتوس به معنی سنگی که به شکل نا منظم شکسته و خرد شده است ساخته اند. فراکتال ها شکل هایی هستند که بر عکس شکل های هندسی اقلیدسی به هیچ وجه منظم نیستند . این شکل ها ،اولا : سراسر نا منظم اند . ثانیا : میزان بی نظمی آنها بر همه مقیاس ها یکسان است
6      آشوب : در فاصله زمانی که یک نظم بی نظمی تبدیل می شود آشوب نامیده می شود

1-2 ریاضیات کلید طلایی برای زیبایی شناسی

ج.ه هاردی” ریاضی دان انگلیسی معتقد است :« معیار ریاضی دان مانند معیار نقاش یا شاعر ، زیبایی است . اندیشه ها هم مانند رنگ ها یا واژه ها باید در هماهنگی کامل و سازگار با یکدیگر باشند . زیبایی نخستین معیار سنجش است . »

اگر این را بپذیریم که ، تصور و خیال ، یکی از سرچشمه های اصلی آفرینش های هنری است ، آن وقت ناچاریم قبول کنیم که ، در ریاضیات هم ، دست کم عنصر های زیبایی و هنر وجود دارد چرا که مایه ی اصلی کشف های ریاضی ، همان تصور و خیال است

به قول ولادیمیر ایلیچ نویسنده ی « دفاتر فلسفی » ، تصور و خیال « حتی در ریاضیات هم لازم است ، حتی کشف حساب دیفرانسیل و انتگرال هم ، بدون تصور و خیال ،ممکن نبود . »

با هیچ نیرنگی ، نمی توان از کشش انسان ها به سمت زیبایی ها جلوگیری کرد و آن چه زشت و نازیبا است را جانشین زیبایی ها کرد

طبیعت عنصر تقارن را عنوان نشانه زیبایی به هنرمند تلقین می‌کند و سپس ریاضی‌دان با کشف قانونمندیهای تقارن به مفاهیم شبه تقارن , تقارن لغزنده می‌رسد و کوبیسم را به هنرمند (نقاش ، شاعر یا موسیقی‌دان) تلقین می‌کند. نغمه‌ها و آواهای موجود در طبیعت الهام دهنده ترانه‌های هنرمندان بوده و ریاضیدانان با کشف قانونهای ریاضی حاکم بر این نغمه‌ها و تلاش در جهت تغییر و ترکیب آنها گونه‌های بسیار متفاوت و دل انگیزی در موسیقی آفریده‌اند. هر زمان که محاسبه درست ریاضی در نوشته‌های ادبی رعایت شده، آثار جالب و ماندگار و نزدیک به واقعیت و قابل قبول برای مخاطب خلق شده است. یکی از نمونه‌های این مساله رعایت توجه صحیح آندره یه ویچ در افسانه ثروتمند فقیر به محاسبات ریاضی در داستان خود می‌باشد (البته بدون وارد کردن محاسبات عددی) که آن را به اثری ماندگار و قابل پذیرش تبدیل کرده است. ترسیمهای هندسی و نسبت زرین کمک شایانی به هنرمندان معمار و برج ساز و می‌کند.

در واقع تمامی عرصه ریاضیات سرشار از زیبایی و هنر است. زیبایی ریاضیات را می توان در شیوه بیان موضوع ، در طرز نوشتن و ارایه آن در استدلالهای منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد.

افلاطون ، تقارن را مظهر و معیار زیبایی می دانست و چون ، گمان می کرد تنها هندسه است که می تواند رازهای هندسه را بر ملا کند و از ویژگی های آن برای ما سخن بگوید ، به هندسه عشق می ورزید و بر سر در آکادمی خود نوشته بود : « هر کس هندسه نمی داند وارد نشود . »

هندسه ، همچون دیگر شاخه های ریاضیات ، زاده ی نیازهای آدمی است ، ولی در این هم نمی توان تردید کرد که ، در کنار سایر عامل ها یکی از علت های جدا شدن هندسه از عمل و زندگی و شکل گیری آن به عنوان یک دانش انتزاعی ، کشش طبیعی آدمی به سمت زیبایی و نظم بوده است . و هرچه هندسه تکامل بیشتری پیدا کرده و عرصه های تازه ای را گشوده ، نظم و زیبایی خیره کننده ی آن ، افزون تر شده است

از همین جا است که ، یکی از راه های شناخت زیبایی ریاضیات و به خصوص هندسه ، آگاهی بر نحوه ی پیشرفت و تکامل آن است . مفهوم نقطه و خط راست ، از کجا آغاز شد و چگونه از فراز و نشیب ها گذشت ، تا به ظرافت و شکنندگی امروز رسید . ما در طبیعت دور و بر خود ، نه تنها نقطه و خط راست هندسی ، بلکه دایره مستطیل و کره و متوازی السطوح هم به معنای انتزاعی خود نمی بینیم

برای دریافت پروژه اینجا کلیک کنید

مقاله ماتریس در word

برای دریافت پروژه اینجا کلیک کنید

 مقاله ماتریس در word دارای 41 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله ماتریس در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله ماتریس در word

مقدمه :  
ماتریس های خاص  
(I  جمع ماتریس ها  
(II  ضرب عدد در یک ماتریس  
(III ضرب ماتریس ها  
ویژگی های عمل ضرب ماتریس ها  
دترمینان  
دترمینان  
منابع :  

بخشی از منابع و مراجع پروژه مقاله ماتریس در word

1) هندسه تحلیلی و جبر خطی ، حمید رضا امیری

2) آشنایی با ماتریس ها ، سید حسن سید موسوی

مقدمه

شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم[1] و علومی چون آمار ، حسابداری و ;;.. استفاده می وشد . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ،  به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان  نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد

تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ،  «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند

هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )

هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد  در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم  یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم  و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی  باشد ، داریم

برای راحتی در نوشتن و انجام عملیات بعدی روی ماتریس ها ،  را درایه ی عمومی نامیده و هر ماتریس (مانند A) را با درایه ی عمومی به صورت  نمایش می دهیم که در آن ،  است

تساوی دو ماتریس : دو ماتریس B,A را مساوی می نامیم و می نویسیم A,B را مساوی می نامیم و می نویسیم A=B ، هرگاه A,B هم مرتبه و درایه های آن ها نظیر با هم برابر باشند ، یعنی اگر  ، در این صورت

 

ماتریس های خاص

1-ماتریس بعدی : ماتریسی که تعداد سطرها و ستون های آن با هم برابر باشد. ماتریس مربعی که دارای n سطر و n ستون باشد ، ماتریس مربعی از مرتبه ی n نامیده می شود

تذکر 1: در هر ماتریس مربعی از مرتبه ی n قطر اصلی شامل درایه های شد  است

تذکر 2 : در هر ماتریس مربعی از مرتبه ی n داریم

2- ماتریس ستونی : ماتریسی که فقط یک ستون داشته باشد

اگر A ماتریسی ستونی با m سطر باشد ، داریم

3- ماتریس سطری : ماتریسی که فقط یک سطر داشته باشد

اگر B ماتریسی سطری با n ستون باشد ، داریم

4- ماتریس صفر : ماتریسی که تمام درایه های آن صفر باشد

ماتریس صفر را با نماد  نمایش می دهیم . برای مثال ماتریس صفر و  ماتریس است

5- ماتریس قطری : ماتریسی مربعی که تمام درایه های بالا و پایین قطر اصلی آن صفر باشند . ( درایه های واقع بر قطر اصلی می توانند صفر باشند . ) هر یک از ماتریس های زیر ، قطری هستند

به عبارت دیگر می توان گفت :  قطری است

تذکر : ماتریس مربعی صفر ، ماتریسی قطری است

6- ماتریس اسکالر : ماتریسی قطری که تمام درایه های واقع بر قطر اصلی آن با هم مساوی هستند (می توانند همگی صفر باشند ) هر یک از ماتریس های زیر اسکالر هستند

تذکر : ماتریس مربعی صفر ، یک ماتریس اسکالر است زیرا قطری است و تمام درایه های قطر اصلی آن صفرند

7- ماتریس بالا مثلثی : ماتریسی مربعی که تمام درایه های واقع در پایین قطر اصلیِ آن صفر باشند ؛ به عبارت دیگر

 بالا مثلثی است

ماتریس های زیر ، بالا مثلثی هستند

 8- ماتریس پایین مثلثی : ماتریسی مربعی که تمام درایه های واقع در بالای قطر اصلیِ آن صفر باشند ، به عبارت دیگر

 پایین مثلثی است

ماتریس های زیر ، پایین مثلثی هستند

تذکر : ماتریس های قطری ، هم بالا مثلثی و هم پایین مثلثی هستند . هرگاه ماتریسی هم بالا مثلثی و هم پایین مثلثی باشد ، همواره قطری است

9- ماتریس همانی یا واحد : ماتریس اسکالری که تمام درایه های روی قطر اصلیِ آن یک است . ماتریس همانی از مرتبه ی n را با  نشان می دهیم

حال ، پس از معرفی چند ماتریس خاص به اعمال روی ماتریس ها ( جبر ماتریسی ) می پردازیم . این اعمال عبارتند از

(I)               عمل جمع ماتریس ها

(II)           عمل ضرب عدد در ماتریس ها

(III)        عمل ضرب ماتریس ها

توجه داشته باشید که چون هر ماتریس مربعی از مرتب 1 باهمان درایه ی خودش که عددی است حقیقی ، برابر است ، یعنی  ؛ می توان نتیجه گرفت که اعداد در واقع حالت خاصی از ماتریس ها به حساب می آیند و اعمال بالا روی ماتریس ها باید به گونه ای باشد که بتوان جمع و ضرب معمولی در اعداد حقیقی را از آن  ها نتیجه گرفت

(I  جمع ماتریس ها

1- هایزنبرگ ، اولین کسی که ماتریس ها را در فیزیک به کار برد ، می گوید : « تنها ابزاری که من در مکانیک کوانتم نیاز دارم ماتریس هاست»

 

برای دریافت پروژه اینجا کلیک کنید